
CHAPTER 7

Android, Where’s My Car?

You parked as close to the stadium as you possibly could, but when the concert ends, 
you don’t have a clue where your car is. Your friends are equally clueless. Fortunately, you 
haven’t lost your Android phone, which never forgets anything, and you remember you 
have the hot new app, “Android, Where’s My Car?” With this app, you click a button when 
you park your car, and the Android uses its location sensor to record the car’s GPS coor-
dinates and address. Later, when you reopen the app, it gives you directions from where 
you currently are to the remembered location—problem solved!

What You’ll Learn
This app covers the following concepts:

• Determining the location of the Android device using the LocationSensor 
component.

• Recording data in a database directly on the device using TinyDB.

• Using the ActivityStarter component to open Google Maps from your app 
and show directions from one location to another. 



100  Chapter 7:  Android, Where’s My Car?

Getting Started
Connect to the App Inventor website and start a new project. Name it “AndroidWhere” 
(project names can’t have spaces) and also set the screen’s title to “Android, Where’s 
My Car?” Open the Blocks Editor and connect to the phone.

Designing the Components
The user interface for “Android, Where’s My Car?” consists of labels to show your current 
and remembered locations, and buttons to record a location and show directions to it. 
You’ll need some labels that just show static text; for example, GPSLabel will provide the 
text “GPS:” that appears in the user interface. Other labels, such as CurrentLatLabel, 
will display data from the location sensor. For these labels, you’ll provide a default value, 
(0,0), which will change as the GPS acquires location information. 

You’ll also need three non-visible components: a LocationSensor for obtaining the 
current location, a TinyDB for storing locations persistently, and an ActivityStarter 
for launching Google Maps to get directions between the current and stored locations.

You can build the components from the snapshot of the Component Designer in 
Figure 7-1.

Figure 7-1. The “Android, Where’s My Car?” app in the Component Designer



Designing the Components  101 

You can build the user interface shown in Figure 7-1 by dragging out the compo-
nents in Table 7-1.

Table 7-1. All of the components for the app

Component type Palette group What you’ll name it Purpose 

Label Basic CurrentHeaderLabel Display the header “Your 
current location”.

HorizontalArrangement Screen Arrangement CurrentAddrArrangement Arrange the address info.

Label Basic CurrentAddressLabel Display the text “Address:”.

Label Basic CurrentAddressDataLabel Display dynamic data: the 
current address.

HorizontalArrangement Screen Arrangement CurrentGPSArrangement Arrange the GPS info.

Label Basic GPSLabel Display the text “GPS:”.

Label Basic CurrentLatLabel Display dynamic data: the 
current latitude.

Label Basic CommaLabel Display “,”.

Label Basic CurrentLongLabel Display dynamic data: the 
current longitude.

Button Basic RememberButton Click to record the current 
location.

HorizontalArrangement Screen Arrangement RememberAddrArrangement Arrange remembered address 
info.

Label Basic RememberedAddressLabel Display the text “Remembered 
Place”.

Label Basic RememberedAddressData 
Label

Display dynamic data: the 
remembered address.

HorizontalArrangement Screen Arrangement RememberGPSArrangement Arrange the remembered 
GPS info.

Label Basic RememberedGPSLabel Display the text “GPS”.

Label Basic RememberedLatLabel Display dynamic data: the 
remembered latitude.

Label Basic Comma2Label Display “,”.

Label Basic RememberedLongLabel Display dynamic data: the 
remembered longitude.

Button Basic DirectionsButton Click to show the map.

LocationSensor Sensors LocationSensor1 Sense GPS info.

TinyDB Basic TinyDB1 Store the remembered location 
persistently.

ActivityStarter Other stuff ActivityStarter1 Launch Maps.



102  Chapter 7:  Android, Where’s My Car?

Set the properties of the components in the following way:

• Set the Text property for the labels with fixed text as specified in Table 7-1.

• Set the Text property of the labels for dynamic GPS data to “0.0”.

• Set the Text property of the labels for dynamic addresses to “unknown”.

• Uncheck the Enabled property of the RememberButton and DirectionsButton.

• Set the ActivityStarter properties so that ActivityStarter.StartActivity will 
open Google Maps. (The ActivityStarter’s properties are only partially visible 
in the user interface shown in Figure 7-1.) Table 7-2 describes how they should 
be specified; you can leave blank any properties not listed in the table.

Table 7-2. ActivityStarter properties for launching Google Maps

Property Value

Action android.intent.action.VIEW

ActivityClass com.google.android.maps.MapsActivity

ActivityPackage com.google.android.apps.maps

Note. The ActivityStarter component lets your app open any 
Android app installed on the device. The properties indicated in 
Table 7-2 can be used verbatim to open Maps; to open other apps, 
see the App Inventor documentation at http://appinventor.google 
labs.com/learn/reference/other/activitystarter.html. 

Adding Behaviors to the Components
You’ll need the following behaviors for this app:

• When the LocationSensor gets a reading, place the current location data into 
the appropriate labels of the user interface. This will let the user know the sensor 
has read a location and is ready to remember it.

• When the user clicks the RememberButton, copy the current location data into 
the labels for the remembered location. You’ll also need to store the remem-
bered location data so it will be there if the user closes and relaunches the app.

• When the user clicks the DirectionsButton, launch Google Maps so it shows 
directions to the remembered location.

• When the app is relaunched, load the remembered location from the database 
into the app.

http://appinventor.googlelabs.com/learn/reference/other/activitystarter.html
http://appinventor.googlelabs.com/learn/reference/other/activitystarter.html


Adding Behaviors to the Components  103 

Displaying the Current Location
The LocationSensor.LocationChanged event occurs not just when the device’s 
location changes, but also when the sensor first gets a reading. Sometimes that first 
reading will take a few seconds, and sometimes you won’t get a reading at all if the 
sight lines to GPS satellites are blocked (and depending on the device settings). For 
more information about GPS and LocationSensor, see Chapter 23.

When you do get a location reading, the app should place the data into the appropri-
ate labels. Table 7-3 lists all the blocks you’ll need to do this.

Table 7-3. Blocks for getting a location reading and displaying it in the app’s UI

Block type Drawer Purpose

LocationSensor1.Location 
Changed

LocationSensor This is the event handler that is triggered when the 
phone receives a new GPS reading.

set CurrentAddressData 
Label.Text to

CurrentAddressDataLabel Place the new data into the label for the current address.

LocationSensor1.Current 
Address

LocationSensor This property gives you a street address.

set CurrentLatLabel.Text 
to

CurrentLatLabel Place the latitude into the appropriate label.

value latitude My Definitions Plug into set CurrentLatLabel.Text to.

set CurrentLongLabel 
.Text  to

CurrentLongLabel Place the longitude into the appropriate label.

value longitude My Definitions Plug into set CurrentLongLabel.Text to.

set RememberButton 
.Enabled to

RememberButton Remember the reading for current location.

true Logic Plug into set RememberButton.Enabled to.

How the blocks work 
As you can see in Figure 7-2, latitude and longitude are arguments of the 
LocationChanged event, so you grab references to those in the My Definitions draw-
er. CurrentAddress is not an argument, but rather a property of the LocationSensor, 
so you grab it from LocationSensor’s drawer. The LocationSensor does some ad-
ditional work for you by calling Google Maps to get a street address corresponding to 
the GPS location. 

This event handler also enables the RememberButton. We initialized it as disabled 
(unchecked) in the Component Designer because there is nothing for the user to 
remember until the sensor gets a reading, so now we’ll program that behavior.



104  Chapter 7:  Android, Where’s My Car?

Figure 7-2. Using the LocationSensor to read the current location

Test your app. Live testing—testing your app on a phone con-
nected to your computer—doesn’t work for location-sensing apps. 
You need to package and download the app to your phone by 
selecting “Package for Phone”→“Download to Connected Phone” 
in the Component Designer. Some GPS data should appear and the 
RememberButton should be enabled.

If you don’t get a reading, check your Android settings for Location & 
Security and try going outside. For more information, see Chapter 23.

Recording the Current Location 
When the user clicks the RememberButton, the most current location data should 
be placed into the labels for displaying the remembered data. Table 7-4 shows you 
which blocks you’ll need for this functionality.

Table 7-4. Blocks for recording and displaying the current location

Block type Drawer Purpose

RememberButton.Click RememberButton Triggered when the user clicks “Remember.”

set RememberedAddress 
DataLabel.Text to

RememberedAddressDataLabel Place the sensor’s address data into the label 
for the remembered address.

LocationSensor1.Current 
Address

LocationSensor This property gives you a street address.

set RememberedLatLabel 
.Text to

RememberedLatLabel Place the latitude sensed into the “remem-
bered” label.



Adding Behaviors to the Components  105 

Table 7-4. Blocks for recording and displaying the current location

Block type Drawer Purpose

LocationSensor.Latitude LocationSensor Plug into set RememberedLat 
Label.Text to.

set RememberedLongLabel 
.Text to

RememberedLongLabel Place the longitude sensed into the “remem-
bered” label.

LocationSensor.Longitude My Definitions Plug into set RememberedLong 
Label.Text to.

set DirectionsButton.Enabled 
to

DirectionsButton Map the remembered place.

true Logic Plug into set DirectionsButton 
.Enabled to.

How the blocks work
When the user clicks the RememberButton, the location sensor’s current readings are 
put into the “remembered” labels, as shown in Figure 7-3. 

Figure 7-3. Placing the current location information in the “remembered” labels

You’ll notice also that the DirectionsButton is enabled. This could get tricky, because 
if the user clicks the DirectionsButton immediately, the remembered location will 
be the same as the current location, so the map that appears won’t provide much 
in terms of directions. But that’s not something anyone is likely to do; after the user 
moves (e.g., walks to the concert), the current location and remembered location will 
diverge.

Test your app. Download the new version of the app to your phone 
and test again. When you click the RememberButton, is the data 
from the current settings copied into the remembered settings?

(continued)



106  Chapter 7:  Android, Where’s My Car?

Displaying Directions to the Remembered Location
When the user clicks the DirectionsButton, you want the app to open Google Maps 
with the directions from the user’s current location to the remembered location (in 
this case, where the car is parked).

The ActivityStarter component can open any Android app, including Google Maps. 
You have to set some configuration data to use it, but to open something like a 
browser or map, the data you need to specify is fairly straightforward.

To open a map, the key property to configure is the ActivityStarter.DataUri 
property. You can set the property to any URL that you might enter directly in a 
browser. If you want to explore this, open http://maps.google.com in your browser 
and ask for directions between, say, San Francisco and Oakland. When they appear, 
click the Link button at the top right of the map and check the URL that appears. This 
is the kind of URL you need to build in your app.

The difference for your app is that the directions map you’ll create will be from one 
specific set of GPS coordinates to another (not city to city). The URL must be in the 
following form:

http://maps.google.com/maps?saddr=37.82557,-122.47898&daddr=37.81079,-122.47710 

Type that URL into a browser—can you tell which famous landmark it directs you across?

For this app, you need to build the URL and set its source address (saddr) and des-
tination address (daddr) parameters dynamically. You’ve put text together before 
in earlier chapters using make text; we’ll do that here as well, plugging in the GPS 
data for the remembered and current locations. You’ll put the URL you build in as the 
ActivityStarter.DataUri property, and then call ActivityStarter.StartActivity. 
Table 7-5 lists all the blocks you’ll need for this.

How the blocks work
When the user clicks the DirectionsButton, the event handler builds a URL for a map 
and calls ActivityStarter to launch the Maps application and load the map, as shown 
in Figure 7-4. make text is used to build the URL to send to the Maps application. 
The resulting URL consists of the Maps domain (http://maps.google.com/maps) along 
with two URL parameters, saddr and daddr, which specify the source and destina-
tion locations for the directions. For this app, the saddr is set to the latitude and 
longitude of the current location, and the daddr is set to the latitude and longitude 
of the location stored for the car. 



Adding Behaviors to the Components  107 

Table 7-5. Blocks for recording and displaying the current location

Block type Drawer Purpose

DirectionsButton.Click DirectionsButton Triggered when the user clicks “Directions.”

set ActivityStarter.Data 
Uri to

ActivityStarter Set the URL for the map you want to bring up.

make text Text Build a URL from multiple parts.

text ("http://maps.google.com/
maps?saddr=")

Text The fixed part of the URL, the source address.

CurrentLatLabel.Text CurrentLatLabel The current latitude.

text (",") Text Put a comma between the latitude and longitude values.

CurrentLongLabel.Text CurrentLongLabel The current longitude.

text ("&daddr=") Text The second parameter of the URL, the destination address.

RememberedLatLabel 
.Text

RememberedLatLabel The remembered latitude.

text (",") Text Put a comma between the values for latitude and longitude.

RememberedLongLabel 
.Text

RememberedLongLabel The remembered longitude.

ActivityStarter.Start 
Activity

ActivityStarter Open Maps.

Figure 7-4. Building the URL to use for launching the Maps application



108  Chapter 7:  Android, Where’s My Car?

Test your app. Download the new version of the app to your phone 
and test again. When a reading comes in, click the RememberButton 
and then take a walk. When you click the DirectionsButton, does 
the map show you how to retrace your steps? After looking at the 
map, click the back button a few times. Do you get back to your app? 

Storing the Remembered Location Persistently
So now you’ve got a fully functioning app that remembers a start location and draws 
a map back to that location from wherever the user is. But if the user “remembers” a 
location and then closes the app, the remembered data will not be available when 
he reopens it. Really, you want the user to be able to record the location of his car, 
close the app and go to some event, and then relaunch the app to get directions to 
the recorded location.

If you’re already thinking back to the No Texting While Driving app (Chapter 4), you’re 
on the right track here—we need to store the data persistently in a database using 
TinyDB. You’ll use a scheme similar to the one we used in that app:

1. When the user clicks the RememberButton, store the location data to the 
database.

2. When the app launches, load the location data from the database into a variable 
or property.

You’ll start by modifying the RememberButton.Click event handler so that it stores 
the remembered data. To store the latitude, longitude, and address, you’ll need three 
calls to TinyDB.StoreValue. Table 7-6 lists the additional blocks you’ll need. 

Table 7-6. Blocks for recording and displaying the current location

Block type Drawer Purpose

TinyDB1.StoreValue (3) TinyDB Store the data in the device database.

text ("address") Text Plug this into the “tag” slot of TinyDB1.StoreValue.

LocationSensor.Current 
Address

LocationSensor The address to store persistently; plug this into the “value” 
slot of TinyDB1.StoreValue.

text ("lat") Text Plug this into the “tag” slot of the second TinyDB1 
.StoreValue.

LocationSensor.Current 
Latitude

LocationSensor The latitude to store persistently; plug this into the “value” 
slot of the second TinyDB1.StoreValue.

text ("long") Text Plug this into the “tag” slot of the third TinyDB1.
StoreValue.

LocationSensor.Current 
Longitude

LocationSensor The longitude to store persistently; plug this into the 
“value” slot of the third TinyDB1.StoreValue.



Adding Behaviors to the Components  109 

How the blocks work 
As shown in Figure 7-5, TinyDB1.StoreValue copies the location data from the 
LocationSensor properties into the database. As you may recall from No Texting 
While Driving, the StoreValue function has two arguments, the tag and the value. 
The tag identifies which data you want to store, and the value is the actual data you 
want saved—in this case, the LocationSensor data.

Figure 7-5. Storing the remembered location data in a database

Retrieving the Remembered Location When the App Launches
You store data in a database so you can recall it later. In this app, if a user stores a 
location and then closes the app, you want to recall that information from the data-
base and show it to her when she relaunches the app.

As discussed in previous chapters, the Screen.Initialize event is triggered when 
your app launches. Retrieving data from a database is a very common thing to do on 
startup, and it’s exactly what we want to do for this app.

You’ll use the TinyDB.GetValue function to retrieve the stored GPS data. Because 
you need to retrieve the stored address, latitude, and longitude, you’ll need three 
calls to GetValue. As with No Texting While Driving, you’ll need to check if there is 
indeed data there (if it’s the first time your app is being launched, TinyDB.GetValue 
will return an empty text). 

As a challenge, see if you can create these blocks and then compare your creation to 
the blocks shown in Figure 7-6. 



110  Chapter 7:  Android, Where’s My Car?

Figure 7-6. Adding the remembered location to a database so it’s available when the app is closed 
and reopened

How the blocks work
To understand these blocks, you can envision a user opening the app the first time, 
and opening it later after previously recording location data. The first time the user 
opens the app, there won’t be any location data in the database to load, so you don’t 
want to set the “remembered” labels or enable the DirectionsButton. On successive 
launches, if there is data stored, you do want to load the previously stored location 
data from the database.

The blocks first call the TinyDB1.GetValue with a tag of “address,” which is one of the 
tags used when you stored the location data earlier. The retrieved value is placed in 
the variable tempAddress, where it is checked to see whether it’s empty or contains 
data.

The if block is necessary because TinyDB returns an empty text if there is no data 
for a particular tag; there isn’t any data the first time the app is launched and there 
won’t be until the user clicks the RememberButton. Since the variable tempAddress 
now holds the returned value, the blocks check to see if the length of tempAddress is 
greater than 0. If the length is greater than 0, the app knows that TinyDB did return 
something, and the retrieved value is placed into RememberedAddressDataLabel. 
The app also knows that if an address has been stored, it has a latitude and longi-
tude. Thus, those values are also retrieved using TinyDB.GetValue. Finally, if data has 
indeed been retrieved, the DirectionsButton is enabled.



The Complete App: Android, Where’s My Car?   111 

Test your app. Download the new version of the app to your phone 
and test again. Click the RememberButton and make sure the 
readings are recorded. Then close the app and reopen it. Does the 
remembered data appear? 

The Complete App: Android, Where’s My Car? 
Figure 7-7 shows the final blocks for the complete “Android, Where’s My Car?” app.

Variations
Here are some variations you can experiment with:

• Create “Android, Where Is Everyone?”, an app that lets a group of people track 
one another’s whereabouts. Whether you’re hiking or at the park, this app could 
help save time and possibly even lives. The data for this app is shared, so you’ll 
need to use a web database and the TinyWebDB component instead of TinyDB. 
See Chapter 22 for more information.

• Create a Breadcrumb app that tracks your whereabouts by recording each loca-
tion change in a list. You should only record a new breadcrumb if the location 
has changed by a certain amount, or a certain amount of time has elapsed, 
because even slight movement can generate a new location reading. You’ll need 
to store the recorded locations in a list—see Chapter 19 for help.  

Summary
Here are some of the ideas we’ve covered in this tutorial:

• The LocationSensor component can report the user’s latitude, longitude, and 
current street address. Its LocationChanged event is triggered when the sensor 
gets its first reading and when the reading changes (the device has moved). For 
more information on the LocationSensor, see Chapter 23.

• The ActivityStarter component can launch any app, including Google Maps. 
For Maps, you set the DataUri property to the URL of the map you want to dis-
play. If you want to show directions between GPS coordinates, the URL will be in 
the following format, but you’d replace the sample data shown here with actual 
GPS coordinates: 

http://maps.google.com/maps/?saddr=0.1,0.1&daddr=0.2,0.2 

• make text is used to piece together (concatenate) separate text items into a 
single text object. It allows you to concatenate dynamic data with static text. 
With the Maps URL, the GPS coordinates are the dynamic data.



112  Chapter 7:  Android, Where’s My Car?

• TinyDB allows you to store data persistently in the phone’s database. Whereas 
the data in a variable or property is lost when an app closes, data stored in the 
database can be loaded each time the app is opened. For more information on 
TinyDB and databases, see Chapter 22.

Figure 7-7. The blocks for “Android, Where’s My Car?”




